Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials.

نویسنده

  • Nader Engheta
چکیده

A form of optical circuitry is overviewed in which a tapestry of subwavelength nanometer-scale metamaterial structures and nanoparticles may provide a mechanism for tailoring, patterning, and manipulating local optical electric fields and electric displacement vectors in a subwavelength domain, leading to the possibility of optical information processing at the nanometer scale. By exploiting the optical properties of metamaterials, these nanoparticles may play the role of "lumped" nanocircuit elements such as nanoinductors, nanocapacitors, and nanoresistors, analogous to microelectronics. I show that this concept of metamaterial-inspired nanoelectronics ("metactronics") can bring the tools and mathematical machinery of the circuit theory into optics, may link the fields of optics, electronics, plasmonics, and metamaterials, and may provide road maps to future innovations in nanoscale optical devices, components, and more intricate nanoscale metamaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental characterization of optical nonlocality in metal-dielectric multilayer metamaterials

The optical nonlocality in metal-dielectric multilayer metamaterials is characterized experimentally as a function of the angle of incidence with respect to the TE-polarized incident light. The physical mechanism of the difference between the nonlocal effective permittivity and the effective-medium-theory-based effective permittivity depending on the incident angle is theoretically revealed thr...

متن کامل

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Design of nanofilters for optical nanocircuits

We theoretically and numerically study the design of optical "lumped" nanofiltering devices in the framework of our recently proposed paradigm for optical nanocircuits. In particular, we present a design of basic filtering elements, such as low-pass, pass-band, stop-band, and high-pass lumped nanofilters, for use in optical nanocircuits together with more complex designs, such as multizero or m...

متن کامل

nphoton.2006.49 Shaelev.indd

Light is the ultimate means of sending information to and from the interior structure of materials — it packages data in a signal of zero mass and unmatched speed. However, light is, in a sense, ‘one-handed’ when interacting with atoms of conventional materials. Th is is because from the two fi eld components of light — electric and magnetic — only the electric ‘hand’ effi ciently probes the at...

متن کامل

Triple-helical nanowires by tomographic rotatory growth for chiral photonics

Three dimensional helical chiral metamaterials resulted in effective manipulation of circularly polarized light in the visible infrared for advanced nanophotonics. Their potentialities are severely limited by the lack of full rotational symmetry preventing broadband operation, high signal-to-noise ratio and inducing high optical activity sensitivity to structure orientation. Complex intertwined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 317 5845  شماره 

صفحات  -

تاریخ انتشار 2007